Lecture: 3-7 Rates of Change in the Natural and Social Sciences

Example 1: A particle moves according to the law of motion $s=f(t)=t^{4}-4 t+1$.
$m+\sec$.
(a) Find the velocity at time t. What is the velocity after 2 seconds?

$$
\begin{aligned}
& v(t)=s^{\prime}=f^{\prime}(t)=4 t^{3}-4 \\
& v(2)=4\left(2^{3}\right)-4=4\left(2^{3}-1\right)=28 \mathrm{~m} / \mathrm{sec}
\end{aligned}
$$

(b) When is the particle at rest?
when $v(t)=0$

$$
\begin{array}{ll}
\begin{array}{ll}
\text { particle at rest? } \\
v(t)=0 & t^{3}=1 \\
0=4\left(t^{3}-1\right) & t=1 \mathrm{sec} \\
0=t^{3}-1 & t
\end{array}
\end{array}
$$

(c) When is the particle moving forward (in the positive direction)?
sign of $v(t)$
sign chart, test $v(t)$:

on $[1, \infty)$ as $v(t)$ is positive on this interval
(d) Draw a diagram to illustrate the motion of the particle.

To do:
(1) plot start
(2) pot at turn point (s)

(3) final direction
(1) at $t=0$ position is $S(0)=1$
(2) at $t=1$ position is $s(1)=1-4+1=-2$
(3) at $t=2$ position is $s(2)=16-8+1=9$
(e) Find the total distance traveled in the first 3 seconds.
$0-1$ second travels 3 units!
at $t=3$ position is $s(3)=3^{4}-4(3)+1=81-12+1=70$
from $1-3$ seconds travels $2+70$ units
Total is 75 m

Example 2: If a ball is thrown vertically upward with a velocity of $80 \mathrm{ft} / \mathrm{s}$, then its height after t seconds is $s=80 t-16 t^{2}$.
(a) What is the velocity of the ball after 2 seconds?

$$
\begin{aligned}
v(t) & =5^{\prime}(t)=80-32 t \\
v(2) & =80-64 \\
& =16 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

(b) Sketch a rough graph of the ball's height as a function of time. Using Calculus, find the maximum height reached by the ball.

$$
s=16 t(5-t)
$$

$$
\begin{aligned}
& \max \text { occurs where } v(t)=0 \\
& 80-32 t=0 \\
& 80=32 t \\
& t=80 / 32=10 / 4=5 / 2 \mathrm{sec}
\end{aligned}
$$

How high: $5(5 / 2)=80(5 / 2)-16(5 / 2)^{2}$

$$
\begin{aligned}
& =200-16(25 / 4) \\
& =200-100 \\
& =100 \mathrm{ft}
\end{aligned}
$$

Example 3: If a tank holds 1000 gallons of water, which drains from the bottom of the tank in 20 minutes, then Torricelli's Law gives the volume of water V remaining in the tank after 20 minutes as

$$
V=1000\left(1-\frac{1}{20} t\right)^{2} \quad 0 \leq t \leq 20
$$

Find the rate at which water is draining from the tank after (a) 5 minutes, (b) 10 minutes and (c) 20 minutes. At what time is the water flowing out the fastest? Slowest?
The rate of change of V is $\frac{d V}{d t}=1000(2)(1-t / 20)(-1 / 20)$

$$
\begin{aligned}
& =2000(1-t / 20)(-1 / 20) \\
& =-100(1-t / 20)
\end{aligned}
$$

a) $t=5 \Rightarrow \frac{d V}{d t}=-100(1-1 / 4)=-100(3 / 4)=-75 \mathrm{gal} / \mathrm{min}$
b) $t=10 \Rightarrow \frac{d V}{d t}=-100(1-1 / 2)=-100(1 / 2)=-50 \mathrm{gal} / \mathrm{min}$
c) $t=20 \Rightarrow \frac{d v}{d t}=-100(1-1)=0 \mathrm{gal} / \mathrm{min}$

Leaks out fastest in the beginning y slows down

Example 4: The volume of a growing spherical cell is $V=\frac{4}{3} \pi r^{3}$, where the radius r is measured in micrometers. Find the average rate of change of V with respect to t when r changes from:
(a) 5 to 6 micrometers

$$
\begin{aligned}
\frac{v(6)-v(5)}{6-5} & =4 / 3 \pi \cdot 6^{3}-4 / 3 \pi \cdot 5^{3} \\
& =\frac{4}{3} \pi\left(6^{3}-5^{3}\right) \\
& =\frac{364 \pi}{3} \\
& \approx 381.180 \mu m^{2}\left(\frac{\mu m^{3}}{\mu m}\right)
\end{aligned}
$$

(b) 5 to 5.1 micrometers

$$
\begin{aligned}
\frac{V(5.1)-V(5)}{5.1-5} & =\frac{\left(4 / 3 \pi \cdot(5.1)^{3}-4 / 3 \pi 5^{3}\right)}{0.1} \\
& =4 / 3 \pi\left(5.1^{3}-5^{3}\right) \div(0.1) \\
& \left.\approx 320.484 \mathrm{sm}^{2}\right)
\end{aligned}
$$

(c) Find the instantaneous rate of change of V with respect to r when $r=5$ micrometers.

$$
\begin{aligned}
\frac{d v}{d r}=\frac{4}{3} \pi \cdot 3 r^{2} & \text { when } r=5 \\
\frac{d v}{d r}=4 \pi r^{2} & \begin{aligned}
\frac{d v}{d r} & =4 \pi\left(5^{2}\right) \\
& =100 \pi \mu^{3} / / \mathrm{m} \\
& =100 \pi \mu^{2}
\end{aligned}
\end{aligned}
$$

(d) Show that the rate of change of the volume of a sphere with respect to its radius is equal to its surface area. Why might this be true?
$\frac{d V}{d r}=4 \pi r^{2}$ and this is SA of sphere.
Think - if you take a sphere, say a spherical apple or spherical cherry and you increase the radius of said sphere (appel el cherry) by adding caramel or chocolates you add about a surface area worth of volume.

Economics
Marginal Cost Function

- $c(x)$ is total cost for maxing x units of a commodity
- If we increase items made from x_{1} to x_{2} $\Delta c=c\left(x_{2}\right)-c\left(x_{1}\right)$ is the change in cost
- avg rate of cost is $\frac{C\left(x_{2}\right)-c\left(x_{1}\right)}{x_{2}-x_{1}}$ as $\Delta x \rightarrow 0$
goes to $C^{\prime}(x)$, the instantaneous rate of change of cost
Example 5: The cost, in dollars, of producing x yards of a certain fabric is

$$
C(x)=1200+12 x-0.1 x^{2}+0.0005 x^{3}
$$

(a) Find the marginal cost function.

$$
c^{\prime}(x)=12-0.2 x+0.0015 x^{2}
$$

(b) Find $C^{\prime}(200)$ and explain its meaning. What does is predict?

$$
\begin{aligned}
c^{\prime}(200) & =12-0.2(200)+0.0015\left(200^{2}\right) \\
& =12-\frac{2}{10}(200)+\frac{15}{10,000} 40000 \\
& =12-40+60 \\
& =32 \text { yard costs are increas }
\end{aligned}
$$

$\left\{\begin{array}{l}\text { at a rate of } \$ 32 / \text { yd } \\ \text { when you produce } 200 y d S\end{array}\right.$
(c) Compare $C^{\prime}(200)$ with the cost of manufacturing the 201st yard of fabric.

$$
\begin{aligned}
\Delta c= & c(201)-c(200) \\
= & \left(1200+12(201)-0.1(201)^{2}+0.0005(201)^{3}\right) \\
& \quad-\left(1200+12(200)-0.1(200)^{2}+0.0005(200)^{3}\right) \\
= & \$ 32.2005
\end{aligned}
$$

